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Abstract
Consider a circle of circumference 1. Throw at random n points, sequentially,
on this circle and append clockwise an arc (or rod) of length s to each such
point. The resulting random set (the free gas of rods) is a collection of a random
number of clusters with random sizes. It models a free deposition process on
a 1D substrate. For such processes, we shall consider the occurrence times
(number of rods) and probabilities, as n grows, of the following configurations:
those avoiding rod overlap (the hard-rod gas), those for which the largest gap
is smaller than rod length s (the packing gas), those (parking configurations)
for which hard rod and packing constraints are both fulfilled and covering
configurations. Special attention is paid to the statistical properties of each such
(rare) configuration in the asymptotic density domain when ns = ρ, for some
finite density ρ of points. Using results from spacings in the random division
of the circle, explicit large deviation rate functions can be computed in each
case from state equations. Lastly, a process consisting in selecting at random
one of these specific equilibrium configurations (called the observable) can be
modelled. When particularized to the parking model, this system produces
parking configurations differently from Rényi’s random sequential adsorption
model.

PACS numbers: 05.20.Jj, 05.70.Ce, 02.50.Cw

1. Introduction

Random sequential adsorption (RSA) models have attracted the attention of many researchers,
starting with the pioneer work on the parking problem of Rényi [19] (see [5] and the references
therein for a survey in physics). In this model, cars (or rods) are thrown sequentially at
random on a street (an interval); a new impinging car leaves without parking if some overlap
with previously parked cars occurs and parks otherwise. This out of equilibrium process
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continues until space-filling of the street is attained (a packing property), ending in a parking
configuration. As underlined by Widom in 1973 (see [5], p 1312), there is a neat distinction
between this sequential space-filling problem and analogous equilibrium problems based on
general configuration-space considerations. Here it would rather be asked for the occurrence
probability of a parking configuration when cars are thrown sequentially on the line but
without rejection, in a free deposition process. In this work, we shall exclusively focus on
this equilibrium version of the Rényi problem. Parking configurations are those for which
parked cars do not overlap (a hard rod property) and which saturate space (a packing property).
We shall therefore also study separately the occurrence times and probabilities of two types
of configurations in a free deposition process: those avoiding rod overlap (the hard-rod
gas) and those for which the largest gap is smaller than the rod length (the ‘packing gas’).
Occurrence probabilities of covering configurations are also studied for their connection with
the continuum one-dimensional percolation model [3]. Without any loss of generality, we
shall work on the circle rather than on the interval. Let us discuss our motivations in more
detail.

What is Rényi’s parking construction? It is an algorithm which sorts out parking
configurations sequentially by forcing one of them to occur. Its telling feature lies in the
fact that the underlying mechanism mimics a natural phenomenon: rods of size s (small)
impinge at random on a substrate (say the unit circle instead of a street) in a random deposition
process; they do not stick to the substrate unless their whole surface adheres completely
to it. Passing through intermediate hard rod states, the algorithm naturally ends up in a
parking configuration with a random number Npark(s) of rods. This random set has prescribed
statistical properties which have been extensively studied; for example, its limiting average
space-filling rate is Rényi’s universal jamming constant sENpark(s) →s↓0 0.748 . . .(see
[10, 17] for much more).

In a free deposition process producing a free gas of rods, rods impinge sequentially at
random on a substrate and always stick to the substrate at the impact site; so, here, Nature
acts freely without constraint. One can think of many natural phenomena where this picture is
relevant. Proceeding in this way, we shall show that only very few (exceptional) configurations
are of the parking type; furthermore, they are observable in the density domain only, when the
number of points n satisfies ns = ρ with ρ ∈ (

1
2 , 1

)
, in the thermodynamic limit. Now assume

that for physical reasons (such as evidence of interactions between rods), only these specific
configurations are worthy of interest in a free deposition process. Then, the statistical question
consisting in selecting one of them at random naturally arises; the output of this random choice
will be called the ‘observable’. The random pick algorithm which we shall introduce will
mimic the random observation process of one of these (happy few) parking configurations: it
consists in selecting one out of the total ensemble of parking configurations (with enlarged
probability space) while giving equal weight to each of them. If Npark(s) is the (random)
number of rods of the observable, we shall see that now sNpark(s) →s↓0 log 2 almost surely
(a.s.). In this alternative approach to Rényi’s producing parking configurations, the random
subset of the circle arising from random throws of s-rods on it is considered globally: the
whole equilibrium configuration is rejected if it is not a parking configuration. When no
further information on the observable is available, the chosen uniform prior distribution on
parking configurations seems to be well-defined.

Parking configurations are of interest in a free deposition process but they are not the
only ones; hard rod configurations (for their connection with simple fluid models), packing
and covering configurations are also remarkable. Their occurrence times and probabilities, as
n varies, are thus studied as a function of rod length s going to 0, to complete the picture; it
is shown that, although the range of their occurrence is now quite large, they all occur with



Random covering of the circle: the configuration-space of the free deposition process 12145

exponentially small probability in the density domain when ns = ρ for some finite density
ρ > 0. Explicit large deviation rate functions and state equations are supplied in each specific
case. The question of the one which can typically be observed in this region is also considered;
the construction is similar to that for parking configurations. Some statistical properties of the
randomly chosen set (the observable) can thus be obtained similarly.

2. Circle covering problems: the free gas of rods

In this section, we introduce the random set under study throughout. This allows us to give a
definition of the free deposition process.

2.1. Random division of the circle: basic facts

Let us first recall some well-known facts on the random division of the circle into n arcs
[7, 11, 12, 20]).

Consider a circle of unit circumference, say T := R/Z. Throw at random n > 1 points
X1, . . . , Xn on this circle (thus, with X1, . . . , Xn independent and identically distributed, say
iid, and uniform). Start with some randomly chosen point out of the n points; call it X(1),n.
Next, consider the ranked set of points (X(m),n,m = 1, . . . , n), obtained from X1, . . . , Xn

while turning clockwise on the circle, starting from X(1),n. Let Sm,n = l(X(m+1),n, X(m),n),m =
1, . . . , n−1 be the consecutive spacings (i.e. the arc lengths between consecutive points), with
Sn,n := l(X(1),n, X(n),n) closing the loop. The random vector of spacings (Sm,n;m = 1, . . . , n)

has singular uniform Dirichlet(n) density function on the simplex [18]

fS1,n,...,Sn,n
(s1, . . . , sn) = (n − 1)! · δ(

∑n
m=1 sm−1). (1)

As a result, Sm,n
d= Sn,m = 1, . . . , n, independently of m and the individual spacings are

all identically distributed (
d=). Their common distribution on the interval (0, 1) is given by

P(Sn > s) = (1 − s)n−1, with mean value ESn = 1/n.

Consider next the sequence (S(m),n;m = 1, . . . , n) obtained while ranking the spacing
vector (Sm,n;m = 1, . . . , n) according to ascending size, hence with S(1),n < · · · < S(n),n. The
S(m),n distribution has been known since [22], with some preliminary work on the subject done
by W A Whitworth (1897) and R A Fisher (1929) (see e.g. [3, 9] for historical background).
In particular, with x+ the positive part of x

P(S(1),n > s) = (1 − ns)n−1
+ and P(S(n),n � s) =

n∑
p=0

(−1)p
(

n

p

)
(1 − ps)n−1

+

are the smallest and largest spacing distributions. From this, one can prove that, with E an
exponentially distributed random variable with mean 1

n2S(1),n
d→ E and

n

log n
S(n),n

a.s.→ 1 as n ↑ ∞.

In a random division of the circle, although the consecutive spacings are identically distributed,
the smallest spacing is of order n−2 while the largest is of order 1

n
log n.

In the problems considered here, the joint law of the smallest and largest spacings will
clearly be involved. This problem has pre-occupied statisticians for a while, starting with
P Lévy, D Darling and L Weiss. We recall here the main results. Following Darling (see [1]
and the references therein), it can be proved in different ways that

P(S(1),n > s1, S(n),n � s2) =
n∑

m=0

(−1)m
( n

m

)
(1 − (ns1 + m(s2 − s1))

n−1
+ . (2)
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Putting s1 = s, s2 = 2s gives the probability of a s-parking configuration with n points. From
(2), it can also be shown that as n ↑ ∞(

n2S(1),n, n

(
S(n),n − 1

n
log n

))
d→ (E,G) (3)

where E and G are independent random variables with P(G � t) = exp(−exp(−t)), t ∈ R a
Gumbel distribution function.

2.2. The free gas of rods model

Let now Xn := {X1, . . . , Xn} be the above set of points drawn at random on the circle. Fix
s ∈ (0, 1) (as a fraction of the unit circle circumference, s is dimensionally the inverse of
length). Consider the coarse-grained random set of arcs

Xn(s) := {X1 + x, . . . , Xn + x, 0 � x < s} (4)

appending clockwise an arc of ‘length’ s to each starting point of Xn. For obvious reasons,
we may call Xn(s) a free gas of rods. For these free gases, the following random variables
are worthy of interest: the first is Pn(s), which is the number of connected components of
Xn(s) (which is also the number of its gaps). By convention, we set Pn(s) = 0 as soon as
the circle is covered by Xn(s) (which is the event S(n),n � s). The second is Ln(s), which is
the total length of Xn(s). As there are n − Pn(s) spacings covered by s and Pn(s) gaps each
contributing s to the covered length, it can be expressed as a contribution of two terms

Ln(s) :=
n∑

m=1

min(Sm,n, s) =
n−Pn(s)∑

m=1

S(m),n + sPn(s). (5)

The problems of determining the distributions of Pn(s) and Ln(s) are solved for each fixed n
and s. Asymptotic results are available as n goes to ∞ jointly with s going to 0, in particular
in the case ns = ρ ∈ (0,∞) where ρ is the free gas density [12]. (Note that ns is the expected
value of the number of arcs containing point x on the circle, which is independent of x from
rotation invariance of the model.)

Finally, we shall need to introduce the following definitions. Let X := {X1, . . . , Xn, . . .}
be the set of a countable number of points drawn at random on the circle. Fix s ∈ (0, 1).
Consider the coarse-grained random set of arcs

X(s) := {X1 + x, . . . , Xn + x, . . . , 0 � x < s}
appending clockwise an arc of length s to each starting point of X. Then X(s) = ∪n>1Xn(s),

where Xn+1(s) = Xn(s)∪{Xn+1 +x, 0 � x < s}. The restriction of X(s) to the first n points of
X is Xn(s), since inserting Xn+1 within Xn (with Dirichlet(n) distribution for spacings) leads to
the set Xn+1 still with Dirichlet(n + 1) distribution for its spacings. We shall call Xn(s), n > 1
the free deposition process. The probability attached to Xn ∈ T

n is denoted by Pn ≡ P while
X ∈ T

∞ is endowed with probability P.

3. Covering configurations

Consider the random set X(s). We shall call a configuration of Xn(s) for which S(n),n � s,

a s-covering configuration with n points. The largest spacing between points being smaller
than the rod length s, the circle is completely covered (Ln(s) > 1). What then is the number
of points for which a covering configuration is likely to occur in X(s)?
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Let us start then with the first occurrence time of a covering configuration: the cover
probability P(Pn(s) = 0) is also the probability that the number of arcs of length s, say
Ncov(s), required to cover the circle is less than or equal to n. In other words, with

Ncov(s) := inf(n : S(n),n � s)

we have: P(Ncov(s) � n) = P(S(n),n � s). As a result, with L(.) the slowly varying function
at ∞ defined by L(x) := log(x log x), x > 1, it holds

s

{
Ncov(s) − 1

s
L(1/s)

}
d→s↓0 G (6)

where G has the Gumbel distribution [6, 8]. So, ENcov(s) = ∑
n>1 P(S(n),n > s) =

1
s
{L(1/s) + γ + o(1)}(s ↓ 0), where γ = E(G) is Euler’s constant [21].

Thus, a covering configuration is likely to occur when the number of points is of order
1
s
L(1/s) although the range of n for which P(S(n),n � s) > 0 is {[1/s] + 1, . . . ,∞}, where

[x] is the integral part of x. Note also that if the number of points is of order a
s
L(1/s), for

some a > 0, then, if a > 1, the circle is covered and the length of the largest cluster is
1, whereas if a < 1 the length of the largest cluster is 0: in this sense, we have a sol–gel
phase transition at a = 1. At the critical point a = 1, if the number of points is of order
1
s
{L(1/s) + t}, t ∈ R, the cover probability is e−e−t

. Given the circle is not covered, there are
P(e−t ) + 1 macroscopic clusters where P(e−t ) is a Poisson random variable with parameter
e−t [13]; the covered length tends to 1− almost surely. This problem was, in part, considered
in the statistical physics’ literature in the context of the 1D continuum percolation model [3].

This allows us to obtain some insight into the covering configurations in the density
domain. Indeed, when the number of points is of order 1/s, there are too few points for a
covering configuration to occur. One expects the probability of covering configurations to
tend to zero exponentially fast. With ρ ∈ (1,∞), we can indeed prove (proceeding as in [4],
see also subsection 7.1)

−1

n
log P(nS(n),n � ρ) → Fcov(ρ) := 1 − p

ρ
+ log

p

ρ
− log(1 − e−p) (7)

where thermodynamical ‘pressure’ p ∈ R and density ρ ∈ (1,∞) are related through the
‘state equation’

1

ρ
= 1

p
− e−p

1 − e−p
. (8)

In this sense, covering configurations are exceptional in the density domain in the free
deposition process.

4. Hard-rod, packing, parking configurations: setting of the problem

Let us here introduce some definitions and preliminaries on the configurations we shall be
concerned with in what follows.

Fix an arc length s ∈ (0, 1). Throw independently n points uniformly on the circle and
consider the set Xn(s), appending an arc of length s to each point. Suppose S(1),n > s. Then,
the number of Xn(s)’s connected components, Pn(s), is maximal (Pn(s) = n) and there is no
overlap between the arcs: we obtain a monodisperse hard-rod gas with n points and size-s
rods. Suppose in addition that the largest gap length, which is S(n),n − s, is less than s. Then,
no additional arc of length s can be added, anywhere on the circle, without provoking overlap
which is a packing property. If both hard rod and packing conditions are fulfilled, we shall
speak of a parking gas of rods. For any of these configurations (hard rod and parking), the
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length of the covered set is always Ln(s) = ns := ρ. In the hard-rod case, values of ρ close to
0 (respectively 1) correspond to a dilute (dense) hard-rod gas. In the parking case, the range
of ρ is

(
1
2 , 1

)
. In sharp contrast with the free gas of rods model, these two models exhibit

interactions as some constraints are imposed on the mutual rod positions.
We call a configuration of Xn(s) for which S(1),n > s, a s-hard rod configuration: the

number of connected components is maximal (there is no arc overlap). We call a configuration
of Xn(s) for which S(n),n � 2s, a s-packing configuration: the largest gap being smaller than
the rod length s, there is no room to insert an additional rod without intersecting Xn(s). We
call a configuration of Xn(s) for which S(1),n > s and S(n),n � 2s, an s-parking configuration;
as a subclass of hard rod configurations, the number of connected components is maximal
(there is no arc overlap); due to lack of space, no additional arc of length s can be added,
anywhere on the circle, without provoking overlap.

As we shall see below, we shall also need to introduce the following related class of
configurations: the covering configurations of Xn(s), as those for which S(n),n � s constitute
a subclass of packing configurations for which S(n),n � 2s. We shall call configurations for
which s < S(n),n � 2s strictly packing configurations: strictly packing configurations are thus
packing configurations with gaps remaining to be filled.

5. Hard-rod configurations

In this section, we shall mainly be concerned with the occurrence probability of hard rod
configurations. Let us start with the first occurrence time of some overlap.

A s-hard rod configuration of Xn(s) (i.e. with n points) occurs with probability
P(S(1),n > s), so

Nhrod(s) := inf(n : S(1),n � s)

is the first occurrence time of some overlap and Xn(s) is a hard-rod configuration if
n � Nhrod(s). Stated differently, suppose that if any two points of Xn are too close (say
at distance less than s for some s), then the circle breaks, i.e. becomes topologically an
interval: then Nhrod(s) is the number of points needed to break the circle. The quantity
s − S1:Nhrod(s) is the amplitude of the first overlap provoking breakage. From the definition of
Nhrod(s), we get: P(Nhrod(s) > n) = P(S(1),n > s) and so

√
sNhrod(s)

d→s↓0 W2

where W2 is a Weibull random variable for which P(W2 > t) = exp(−t2), t > 0. Indeed
P(Nhrod(s) > n) = P(S(1),n > st) = (1 − ns)n−1

+ and, as s is small [14]

P(
√

sNhrod(s) > t) ≈ (1 − t
√

s)t/
√

s → e−t2
. (9)

Consequently, ENhrod(s) = ∑
n�2 P(S(1),n > s), with ENhrod(s) ∼s↓0

1
2

√
π
s
. Some overlap is

therefore very likely to occur when the number of points is close to s−1/2. We note however
that the range of n for which P(S(1),n > s) > 0 is {2, . . . , [1/s]}.

Let us now consider hard-rod configurations in the density domain: when the number of
points is of order 1/s (the case with a density ρ := ns of points), there are too many points for
a non-overlapping configuration to occur. One expects that the probability of non-overlapping
(hard-rod) configurations tends to zero exponentially fast. Proceeding as in (7), (8), we now
find

−1

n
log P(nS(1),n > ρ) → Fhrod(ρ) = 1 + p − p

ρ
+ log

p

ρ
(10)
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with ρ ∈ (0, 1). Here, thermodynamical ‘pressure’ p > 0 and density ρ ∈ (0, 1) are related
through the well-known Mayer ‘state equation’ for a hard-rod Tonks gas [15, 16]

1

ρ
= 1

p
+ 1. (11)

The limiting rate function is explicit there with Fhrod(ρ) = − log(1−ρ). In the free deposition
process, hard-rod configurations are exceptional in the density domain as well.

5.1. Random pick from hard-rod configurations

As mentioned in the introduction, we would like to model the observation process consisting
in selecting one of the hard-rod configurations at random. The above considerations and facts
suggest that the following construction could be of some relevance.

A s-hard rod configuration of Xn(s) (i.e. with n points) occurs with probability
P(S(1),n > s). Recall that the values of n for which the probability P(S(1),n > s) > 0
vary in the range {n−(s) := 2, . . . , n+(s) := [1/s]}. As a result, with I(.) the set-indicator
function, the quantity

µhrod(s) := E

n+(s)∑
n=2

I(S(1),n > s) =
n+(s)∑
n=2

P(S(1),n > s) (12)

is the expected number of s-hard-rod configurations in the random set X(s) = ∪n>1Xn(s).
This suggests introducing the following random observable: consider the set of all s-hard-rod
configurations in X(s). Pick at random one of them and call it the ‘observable’. Let Nhrod(s)

be the number of rods of the output. Then, the law of Nhrod(s) will be given by

P(Nhrod(s) = n) = P(S(1),n > s)/µhrod(s) (13)

with n ∈ {2, . . . , n+(s)}. Note that the random variable Nhrod(s) is also characterized by

P(Nhrod(s) = n) = P(Nhrod(s) > n)

ENhrod(s)
.

Under this form, the distribution of Nhrod(s) is well-defined; it can be interpreted as the
limiting forward recurrence time of some pure renewal process on the set N when discrete
times separating consecutive arrivals in the queue are distributed like Nhrod(s).

Assume n → ∞, s → 0 with ns = ρ ∈ (0, 1). To have an estimate of the normalizing
mean µhrod in (13), as a function of large n, for all values of s, we have to integrate the above
probability (10), (11) over ρ in the corresponding range. We find the saddle-point estimate{∫ 1

0
e−nFhrod(ρ) dρ

}1/n

→ 1, n ↑ ∞.

From this and (13), (10), we get sNhrod(s) →P−a.s. 0 with large deviation rate function

s log P(sNhrod(s) = ρ) → rhrod(ρ) = ρ(Fhrod(0) − Fhrod(ρ)) = ρ log(1 − ρ). (14)

A hard-rod gas is in one of the hard-rod states. If some observer picks at random one of these
configurations, the observed limiting proportion of the circle which is covered is thus 0: the
randomly chosen set looks void. This is not so paradoxical as it first may appear. Recall
indeed that in the density domain, i.e. as n ↑ ∞ and s ↓ 0 while ns = ρ ∈ (0,∞), with
θ := e−ρ , the free gas of rods behaves as follows:

1√
n
{Pn(s) − nθ} d→

n↑∞ Gauss(0, σ 2 = θ(1 − θ))

√
n{Ln(s) − (1 − θ)} d→ Gauss(0, σ 2 = θ(1 − θ)).
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In this Gaussian asymptotic regime, the physical image is as follows: the number of connected
components diverges since 1

n
Pn(s) → θ < 1 (almost surely), thus with some overlap between

rods; each connected component length has asymptotically equal distribution whose average
size goes to zero and the expected covered length ELn(s) tends to 1 − θ which is a fraction of
the circle length that does not go to 0 nor to 1 [12, 13]. Zooming on hard-rod configurations
of this free gas (i.e. conditioning), θ is forced to 1 and so the fraction of the circle which is
covered goes to 0. So, the fact that Nhrod(s) →a.s. 0 is not very informative, nor surprising.
The information on the randomly chosen set rather seems to be encoded in the large deviation
rate function (14).

6. Packing configurations

In this section, we shall mainly be concerned with the occurrence probability of packing
configurations. The random pick algorithm to produce the observable is applied to strictly
packing configurations.

6.1. First occurrence time of a packing configuration

Let us first investigate the following question: what is the number of points needed to reach
a packing configuration? A s-packing configuration of Xn(s) (i.e. with n points) occurs with
probability P(S(n),n � 2s), so

Npack(s) := inf(n : S(n),n � 2s)

can be interpreted as the first time a packing configuration occurs in X(s). From this, we get
P(Npack(s) � n) = P(S(n),n � 2s) and so, with L(.) the slowly varying function at ∞ defined
above, proceeding as for Ncov(s), we get

2s

{
Npack(s) − 1

2s
L

(
1

2s

)}
d→s↓0 G (15)

where G has the Gumbel distribution. In particular, ENpack(s) := ∑
n>1 P(S(n),n > 2s)

satisfies ENpack(s) = 1
2s

{
L

(
1
2s

)
+ γ + o(1)

}
(s ↓ 0). Thus, as the number of points is of order

1/
√

s a first overlap is very likely to occur. Packing configurations are reached much later,
when n is of the order 1

2s
L

(
1
2s

)
, just before covering when n is of the order 1

s
L

(
1
s

)
.

When the number of points is of order 1/s (the case with a density), there are too few points
for a packing configuration to occur. One expects the probability of packing configurations to
tend to zero exponentially fast. With ρ ∈ (1/2,∞), we can prove similarly

−1

n
log P(nS(n),n � 2ρ) → Fpack(ρ) := 1 − p

ρ
+ log

p

ρ
− log(1 − e−2p) (16)

where pressure p ∈ R and density ρ ∈ (1/2,∞) are now related through

1

ρ
= 1

p
− 2 e−2p

1 − e−2p
. (17)

6.2. Random pick out of strictly packing configurations

A strictly packing configuration of Xn(s) occurs with probability

P(s < S(n),n � 2s) = P(S(n),n � 2s) − P(S(n),n � s).
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The values of n for which the probability P(s < S(n),n � 2s) > 0 vary in the range
{n−(s) := [1/(2s)] + 1, . . . , n+(s) := ∞} and the quantity

µpack(s) := E

∞∑
n=n−(s)

I(s < S(n),n � 2s) =
∞∑

n=n−(s)

P(s < S(n),n � 2s) (18)

is the expected number of strictly s-packing configurations in the random set X(s) =
∪n>1Xn(s). Note that

∑∞
n=n−(s) I(s < S(n),n � 2s) < ∞, which is not the case for∑∞

n=n−(s) I(S(n),n � 2s) and so the construction that follows would have failed if blindly
applied to all packing configurations.

Picking at random a strictly s-packing configuration in X(s), we can define the random
observable Npack(s) as the cardinality of the random output of the trial. Its distribution is given
by

P(Npack(s) = n) = P(s < S(n),n � 2s)

µpack(s)
n ∈ {[1/(2s)] + 1,∞}. (19)

This is also

P(Npack(s) = n) = P(Ncov(s) > n) − P(Npack(s) > n)

E(Ncov(s)) − E(Npack(s))

showing that the random variable Npack(s) is well-defined.
Assume n → ∞, s → 0 with ns = ρ for some density ρ. We would like to understand the

distribution of Npack(s) in this asymptotic regime. Recalling the asymptotic regime described
in (7), (8) and (16), (17), with ρ ∈ (

1
2 , 1

)
we now find

−1

n
log P(ρ < nS(n),n � 2ρ) → Fpack(ρ) := 1 − p

ρ
+ log

p

ρ
− log(1 − e−2p). (20)

The limiting large deviation rate function is thus the restriction of Fpack(ρ) defined in (16),
(17) on the interval ρ ∈ (

1
2 , 1

)
. On this interval, this function is minimum at ρ = 1 (pressure

p = 0) and Fpack(1) = log(e/2). To have an estimate of the normalizing mean µpack in (19),
as a function of (large) n, for all values of s, we have to integrate the above probability (20)
over ρ in the corresponding range. We find the saddle-point estimate{∫ 1

1/2
e−nFpack(ρ) dρ

}1/n

→n↑∞ 2/e

because the function e−Fpack(ρ) > 0 is maximal at ρ = 1, with value e−Fpack(1) = 2/e there.
This shows, from (19), (20), that, as s tends to 0, the random variable sNpack(s) has a density
P(sNpack(s) = ρ) at point ρ satisfying

P(sNpack(s) = ρ) ∼s↓0 {eFpack(1)−Fpack(ρ)}ρ/s .

This density is very peaked around the value ρ = 1. As a result sNpack(s)
P−a.s.→ s↓0 1 and

lim
s↓0

s log P(sNpack(s) = ρ)) = rpack(ρ) (21)

with concave large deviation rate function

rpack(ρ) = ρ(Fpack(1) − Fpack(ρ)) � 0 ρ ∈ (
1
2 , 1

)
.

In this random selection process of a strictly packing configuration, the limiting proportion of
the covered space is 1 and the randomly chosen set looks full. This sounds natural for (strictly)
packing configurations.
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7. Parking configurations

In this section, we study the occurrence probability and time of parking configurations:
considering Nhrod(s) and Npack(s) jointly, we get(√

sNhrod(s), 2s

{
Npack(s) − 1

2s
L

(
1

2s

)})
d→s↓0 (W2,G)

where W2 and G are independent. As a whole, it is therefore very improbable that there is a
finite Npark(s) defined by

Npark(s) = inf(n : S(1),n > s, S(n),n � 2s)

i.e. by the number of points needed to attain a parking configuration. Indeed, for realizations
of (X1, . . . , Xn, . . .) for which some overlap occurs before a packing configuration is reached,
Npark(s) should be rejected at ∞ as a parking configuration will be observed with probability
going to 0. Thus, there is no way to centre and scale Npark(s) to make it converge in law and the
question of the first occurrence time of some parking configuration is ill-defined (degenerate).

7.1. Parking configurations in the density domain

For the parking model, one expects that the probability of a parking configuration at density
ρ (which is P(nS(1),n > ρ, nS(n),n � 2ρ)) tends to 0 exponentially fast with n. This is
because when n is of the order 1/s, there are at the same time too many points for a hard-rod
configuration to occur and too few points for a packing configuration to occur. We reproduce
here a slight modification of a result given in [4] where the pair correlation function of parking
configurations was computed and analysed in some detail. If we define the partition function
in the parking case as

Zn(ρ) :=
∫

T
n

δ(
∑n

m=1 sm−1)

n∏
m=1

I
(ρ

n
< sm � 2

ρ

n

)
dsm (22)

we have P(nS(1),n > ρ, nS(n),n � 2ρ) = (n−1)! ·Zn(ρ), using (1). Now, with p the pressure,
we shall rather consider the associated isobaric partition function

Z̃n(p, ρ) :=
∫

T
n

exp

(
−p

ρ
n

n∑
m=1

(
sm − 1

n

))
n∏

m=1

I
(ρ

n
< sm � 2

ρ

n

)
dsm

=
{∫

T

exp

(
−p

ρ
n

(
s1 − 1

n

))
I
(ρ

n
< s1 � 2

ρ

n

)
ds1

}n

=
{∫ 2ρ

ρ

1

n
exp

(
−p

ρ
(u − 1)

)
du

}n

omitting the Dirac delta constraint in (22) but coding it in the exponential prefactor. Using
Stirling’s formula, we get

(n − 1)! · Z̃n(p, ρ) ∼
{

1

e

∫ 2ρ

ρ

exp

(
−p

ρ
(u − 1)

)
du

}n

=
{

ρ

p
exp

(
−

(
1 − p

ρ

))
(e−p − e−2p)

}n

=: exp(−nFρ(p)).

Suppose p = pρ satisfies condition ∂pFρ(pρ) = 0. Define then Z̃n(ρ) := Z̃n(p, ρ) and
Fpark(ρ) := Fρ(p) at p = pρ . In this way, we find

Fpark(ρ) = 1 − p

ρ
+ log

p

ρ
− log(e−p − e−2p) (23)
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Figure 1. Top left: covering configuration, top right: hard rod, bottom left: packing, bottom right:
parking configurations.

where simple computations show that p ∈ R and ρ ∈ (1/2, 1) are related through the state
equation

1

ρ
= 1

p
+

1 − 2 e−p

1 − e−p
. (24)

Then, the condition expressed in the Dirac delta constraint in (22) does not change the
expected value in Z̃n(ρ) but only suppresses the fluctuations of the underlying random walk
variable (the equivalence of ensembles principle). These fluctuations follow the central limit
theorem, so that in the thermodynamic limit, one could prove rigorously following [2] that
− 1

n
log Zn(ρ) ∼ − 1

n
log Z̃n(ρ). In our context, this means

lim
n↑∞

−1

n
log P(nS(1),n > ρ, nS(n),n � 2ρ) = Fpark(ρ). (25)

The rate function Fpark(ρ) is convex, minimal at ρ = log 2 with Fpark(log 2) = 2 log 2 and
the parking probability P(nS(1),n > ρ, nS(n),n � 2ρ) tends to 0 exponentially fast according
to (25). In a free deposition model, parking configurations are concentrated in the density
domain and are exceptional there.

Note that results displayed in (7), (8), (10), (11) and (16), (17) can be obtained similarly,
adapting the constraints on the spacings to each specific case. The expressions of the large
deviation functions (7), (8), (16), (17) and (23), (24) seem to be novel.

We plot in figure 1 the functions Fcov, Fhrod, Fpack and Fpark as a function of density in each
specific case, using the equations of state. The Helmholtz free energy functions per particle f

are related to the F through f (ρ) = F(ρ) + log ρ − 1 and f (ρ) = −p

ρ
+ g(ρ) where g is the

Gibbs potential per particle.
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7.2. Random pick from parking configurations

An s-parking configuration of Xn(s) (i.e. with n points) occurs with probability P(S(1),n >

s, S(n),n � 2s) given in (2). The range of n for which the probability P(S(1),n > s, S(n),n �
2s) > 0 is {n−(s) := [1/(2s)] + 1, . . . , n+(s) := [1/s]}, thus in the density domain with
ρ ∈ (1/2, 1). Let

µpark(s) :=
n+(s)∑

n=n−(s)

P(S(1),n > s, S(n),n � 2s) (26)

be the expected number of s-parking configurations in X(s).
Pick at random a s-parking configuration in X(s) and let Npark(s) be the number of rods

of the output. From this definition, we get

P(Npark(s) = n) = P(S(1),n > s, S(n),n � 2s)/µpark(s) (27)

with n ∈ {n−(s), . . . , n+(s)}.
Suppose n → ∞ together with s → 0, with ns = ρ ∈ (1/2, 1). To have an estimate of

the normalizing mean µpark in (27), as a function of (large) n, for all values of s, we have to
integrate the parking probability over ρ in the corresponding range. From (25), we find the
saddle-point estimate{∫ 1

1/2
exp(−nFpark(ρ)) dρ

}1/n

→n↑∞ sup
ρ∈(1/2,1)

exp(−Fpark(ρ)) = 1/4

because the function exp(−Fpark(ρ)) > 0 is maximal at ρ = log 2, with value 1/4 there. This
shows, from (25), (27), that, as s tends to 0, sNpark(s) has a density at ρ verifying

P(sNpark(s) = ρ) ∼s↓0 {4 exp(−Fpark(ρ))}ρ/s

concentrating on ρ = log 2. As a result sNpark(s)
P−a.s.→ s↓0 log 2 ≈ 0.693 . . . and

lim
s↓0

s log P(sNpark(s) = ρ)) = rpark(ρ) (28)

with large deviation rate function rpark(ρ) = ρ(Fpark(log 2) − Fpark(ρ)) � 0. In this random
selection procedure of the observable parking configuration, the limiting fraction of the covered
space is log 2 which is slightly less than Rényi’s jamming limit.

8. Concluding remarks

The free deposition process of rods on a 1D substrate has been studied as a random growth
model. For rods with size s (small), hard-rod configurations prevail until the average number
of points n is of the order s−1/2, which is the average ‘time’ of some rod overlap. Some of
them can still be found when n is of the order ρ/s, ρ ∈ (0, 1) but the probability of their
occurrence is exponentially small there. Packing configurations occur as soon as n is of
the order ρ/s, ρ > 1/2 but with exponentially small probability, the typical value of their
occurrence rather being (2s)−1L(1/(2s)). The range of appearance of parking configurations
(as packing configurations with no overlap between rods) is thus when n is of the order
ρ/s, ρ ∈ (1/2, 1). Their probability of occurrence is always exponentially small. Covering
configurations of the circle are observable as soon as n is of the order ρ/s, ρ > 1 but with
exponentially small probability, the typical value of their occurrence being s−1L(1/s). With
L(x) := log(x log x), x > 1, this can perhaps be summarized by figure 2.

For physical reasons, one may wish to focus on any of these special types of configurations
in the density domain. The problem of the cardinality of the configuration which can typically
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Figure 2. The main types of events and configurations encountered as the average number of
points n grows with rod length s in a free deposition process. Parking configurations are localized
in the density domain. They are exceptional.

be observed has been addressed in the thermodynamic limit. When particularized to parking
configurations, our construction is a random selection procedure from the statistical ensemble
of all (rare) parking configurations that can arise in a free deposition process, giving equal
weight to each of them. This should not be confused with Rényi’s model which also selects
one of these parking configurations but from sequential physical mechanisms in a deposition
process with specific local rules.
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